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Stochastically stable fluctuations in a model of electrical discharge with external illumination
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A Markov description of the electron population in a model of electrical discharge between parallel plates in
the presence of an external illumination source is developed. Electron production is assumed to be due to
ionizing collisions in the gas, as well as photoelectric emission at the cathode; the electrons are assumed to
move with a constant drift velocity towards the anode, where they are lost. The Markov description is based on
a discretized distribution of electrons within the gap, from where macroscopic equations for the mean electron
density and the density-density correlation function are obtained in the limit to the continuum. The results
show the existence of stochastically stable solutions only when stationary discharges are obtained by means of
a nonvanishing external illumination. In addition, the variance-to-mean ratio in the steady state shows a
discontinuity when the conditions of the discharge are those for which the breakdown Townsend criterion is
satisfied. Numerical examples are used to illustrate the re$8t€63-651X97)10510-4

PACS numbds): 52.80.Dy, 05.40+j, 02.50—r

[. INTRODUCTION Ohmic resistance, which provides self-stabilizing properties:
When the current in the discharge increases, the voltage
In an earlier worl 1] a simple Markov description for the across the effective resistance of the circuit rises and the
ionization growth in an electrical discharge between parallepotential difference between the electrodes drops then; this
plates was developed. Unlike previous related works dealingn turn tends to reduce the ionization rate inside the gap and
exclusively with the total electron populati¢8—8], a char- hence the current. If the external resistance can be neglected,
acteristic functional approach was introduced there to anahe statistical fluctuations cannot be neutralized in this man-
lyze both space- and time-stochastic fluctuations of the eledier and the stability properties are then Ig&tL2]. In prac-
tron population. In that model, the ionization growth insidetice, a breakdown cannot be sustained when the applied volt-
the gap is assumed to be due to atomic ionizing collisiongige between the electrodes is exactly the Townsend voltage;
and to photoemission at the cathode from deexcitation oft is necessary that a small overvoltage exists, ensuring an
atoms; losses in the system are accounted for by the driftxpanding reproduction of the electron populatj@2] and,
motion of the electrons towards the anode due to the electriit the absence of any electric-field distortion due to space-
field between the plates. Diffusion processes, space-chargdarge accumulation, a stationary discharge is obtained due
effects, and electron attachment and detachment are not cot® the feedback effect just described.
sidered. In addition, the voltage between the plates is as- A Markov description of population dynamics requires
sumed to remain constant at all times, neglecting thus thbomogeneity conditions in the system under consideration
feedback effect provided by the external circuitry. Under[1,13,14. Thus any localized fluctuation in a homogeneous
these assumptions, it is found that the average populatiosystem spreads out instantaneously, as compared to the char-
reaches a stationary state whenever the well-known brealacteristic time of the system, so that global microscopic
down Townsend criterioi2,9-11 is satisfied; however, the quantities depend only on the values they assumed at a pre-
fluctuations around the mean behavior diverge as timeious time. An electrical discharge does not constitute a ho-
evolves. The system is then stochastically unstable and it i;10geneous system since the mere information of the total
concluded that the electron population in such dischargepopulation at a given time does not determine completely its
will eventually extinguish. When the discharges do not satfuture evolution. Fluctuations in the total electron population
isfy the Townsend criterion, both the mean electron populaare thus local phenomena and can only be described by in-
tion and its fluctuations either grow without lim{gupercriti-  troducing the spatial density as a random object. Hence a
cal case or vanish asymptoticallysubcritical cas¢ Hence, Markov description of the evolution of an electrical dis-
in the absence of any other electron sources, a stationagharge can be constructed only by taking into account both
discharge cannot be sustained. The purpose of this paper istioe space and the time distribution of the electron population.
extend that work, by including in the model an external The model adopted here consists of a simple one-
source of electrons at the cathode, e.g., ultraviolet illuminadimensional description of an electrical discharge between
tion, to show that a stationary discharge with finite fluctua-parallel plates, which extends fror=0 to L. There exist a
tions can be achieved under these conditions. uniform electric field€ between the electrodes and a filling
In most of the laboratory discharges, the external circuitrygas at pressur®, with e£/oP<1, wheree is the electronic
through which the discharge voltage is applied can neutralizeharge andr the cross section for momentum trangfgsg|.
the statistical fluctuations in the system by the effect of itsAlthough this system is not homogeneous, local homo-
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geneity conditions are introduced by dividing the configura-subcritical discharges in the presence of an external illumi-
tion space into a certain numbkr of cells of widthAx, in nation source; this particular case is studied in detail. Nu-
which those conditions prevail. The distribution of electronsmerical examples are used to illustrate the results. Finally,
along the cells is assumed to change due to the followingec. V contains some concluding remarks.

processes: (i) an electron may suffer an ionizing collision

with an atom in the gas, producing an additional electron at Il. EVOLUTION EQUATIONS FOR THE MEAN
the same position, with a probability per unit tirag (ii) an ELECTRON DENSITY AND THE DENSITY-DENSITY
electron may excite an atom to emit a photon after a negli- CORRELATION FUNCTION

gible delay, producing a photoelectron emitted from the cath- . o
ode, and the entire process is here represented by a probabil-AS mentioned above, the spatial distribution of electrons
ity per unit time b; (i) a photoelectron may also be a_\long the gap is accounted for by d|s_,cret|2|ng the configura-
produced at the cathode due to the incidence of external ilion space in a numbef of cells of width Ax=L/K. Thus
lumination, with a probability per unit tim&(t); and finally, the distribution of electrons within the cells is given by the
(iv) an electron within a cell may move into an adjoining cell ime-dependent random state veate¥{ny,n,,...,Nk}, con-
with a probability per unit times/Ax, wherep is a constant Stltutlljlg a Markov process whose S_t._atIStICa| (gopertles are
drift velocity. The voltage across the gap is assumed constafiscribed by the conditional probabiligy(n,t|n®.,0). The
at all times and thus, similarly to the previous model, no€volution of the conditional probability satisfies a master
feedback effect due to the external circuitry is taken into€duation of the form
account. In addition, diffusion processes, space-charge ef-
fects, as well as electron attachment and detachment are also  — p(n,t|n(©,0)= >, {Q(m|n)P(m,t|n®,0)
neglected here. dt m

Within the restrictions given above, in Sec. Il we con-
struct a master equation for the conditional probability

P{n\},t{n{®},0) of having a distribution of electror®,}  \where Q(m|n) is the transition probability per unit time
at a timet given an initial distribution{n{”’} att=0, withn,  from a distributionm to a distributionn. The conditional
denoting the number of electrons in thth cell. Taking the  probability P must satisfy the initial condition

limit when the number of cells goes to infinity and their

width Ax goes to zero, in the dynamical equation for the P(n,0In'®,0)= 8, 408, n0)-** G, n(©), 2
characteristic function associated wih an equation for the

characteristic functional of the continuous electron distribu-as well as the normalization condition

tion n(x,t) is obtained. First- and second-order functional

derivatives of this latter equation yield evolution equations S P(n {n©@,0)=1 3
for the mean electron density and the density-density corre- n ' ' '

lation function, respectively. The general solution to the

equation for the mean electron density, as well as the assder all t=0.

ciated mean total population, is obtained in Sec. Ill. In Sec. Electron gain and losses in each cell are accounted for in
IV the solution to the equation for the density-density corre-the model through the probabilities b, 1(t), andu/AX, as
lation function is analyzed in general and it is shown thatset in the Introduction. The transition probability per unit
stationary solutions with finite fluctuations exist only for time in this case is given by

—Q(njm)P(n,t|n®,0)}, (1)

K
Q(m|n) = ajzl mj[5n1,ml5n2,m2' .. 5nK va]ijijrl_l— b

K
j§=:1 mj) 5n1,m1+15n2,m2' o 5nK ,mK+ I(t) 5n1,m1+15n2,m2' o 5nK my

K-1

M M
+ AX jgl mj[5nl,m15n2,m2' o 6”»( ,mK]mjﬂmj—l,ijHmHl-%—l"}_ AX mKénl,mlénz,mz' o 5nK mg—1s 4

where the notatiom;—m; =1 indicates replacement of; that the homogeneity conditions within each cell are satis-
by m;=1 in the corresponding Kroneckér for each value fied. In this limit, a convenient alternative representation of
of j in the summation. The transition probability per unit the conditional probabilityP is that of the characteristic
time in Eq.(4) can be obtained from the corresponding ex-functional[13,15
pression in Ref[1] by adding to the total electron source at )
':ir;encathodd)ijmj the sourcd (t) due to external illumina- [ e(x);t]z<exp(if dx’n(x")6(x") > (5)

. 0

The ionization growth in the discharge gap is adequately

described by the Markov process specified in Etjsand(4)  where6(x) is a continuous function, conjugate to the micro-
only in the limit when the size of the cells tends to zero, soscopic densityn(x;)=lim,,_.o{n;/Ax} [1]. It can be shown
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then that the characteristic function@] 9;t] satisfies the
partial integro-differential equation

.0 _
—1 E C[e,t]
L s i 5C[ 6;t]
= JO dx{a(1—e'")+b(1—e'?)} 590X
+il (1) (1—e’O)C[ ;1]
) L d [ C[0;t]
+|,ufo dx 0(x) x <—50(x)dx)
+iu| 6(x) et (6)
K 86(x)dx x:O’

whered(L*)=0 and

w=' d C[O(x)+ ed(x—x");t]

560 )dxX M de

(@)

is the functional derivative o€ [16].
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TH T
=2aR(x',x";t)+ads(x' —x")p(x’,1)

+'(t)5(x')5(x")+b5(x')Jde R(X,X";t)
0

L
+b5(X”) Jo dx R(X’,X;t)+b5(xl)5(xr/)

X Jode p(X,t) — wd(xX")R(x",X";1)

— (X" )R(X" X" 1)+ wd(x' —L)S(X"—L)p(x',t),

(10)
in which the following definitions have been used:
p(x.H)=(n(x,1)) (1)
for the mean electron density and
R(x',x";t)={én(x’,t) n(x",t)) (12

for the density-density correlation function; he&a(x,t)
=n(x,t)—(n(x,t)) denotes local-density fluctuations at a
positionx and a givert. The left-hand side of Eq9) rep-
resents the material derivative of the mean electron density

The mean electron density and the density-density corres The first term on the right-hand side of E@) is the
lation function are obtained, respectively, by taking the first-source due to primary electron production, i.e., ionizing col-
and second-order functional derivatives of the characteristifisions; the next two terms represent the secondary produc-
functional in Eq.(5), that is, tion at the cathode, due to excitation collisions inside the gap

and external illumination, respectively; the last term is a
negative boundary source of electrons at the cathode, whose

O6C[ 6;t] _ , role is to discard any contribution to the electron population
—59(X/)dxl =i(n(x",1)), coming from the left-hand side of the cathode since this is
0=0 (8) physically not possible. A similar interpretation holds for Eq.
(10).
5 The mean total population of the electrons in the N&p)
o°C[6t] . and the fluctuations around this valaét) are obtained from

(n(x",t)n(x",1)).

S6(x")dx' §6(x")dx" the mean density and the density-density correlation function

as

=0

L
The averaggn(x,t)) represents the mean density of elec- N(t) = fo dx p(xt) (13

trons as a function of the positionin the gap at a time,
whereagn(x’,t)n(x",t)) accounts for statistical correlations
between the microscopic densities of electrons at two differ-
ent positionsx’ andx” at the same time.

From Egs.(6) and (8) the mean electron density and the
density-density correlation function are found to satisfy, re\yhereo?(t)=(SN(t)) is the variance of the statistical dis-
spectively, the partial integro-differential equations tribution of the electron population at tinte In the follow-

ing section, we obtain the solution to E@) for the mean

and

a?(t)= deijdx’R(x,x’;t), (14
0 0

electron density. The variance of the total electron popula-
ﬁ+ tion is analyzed in Sec. IV.

a) t)= t)+bdl de "p(x’,t
i p(xD)=ap(x)+bs(x) | dx'p(x' .1

Hax

I1l. MEAN ELECTRON POPULATION
+1(t) 8(x) — wS(X) p(X,t) 9
By performing a Laplace transforfd 7] for the time do-
main, Eq.(9) can be cast into an ordinary differential equa-

and tion for p(x,s), the mean density in the domain. The so-
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lution to this equation in the interval<Ox<L is given by v~vherep(>&0) is the mean electron density at time zero and
1 (x N(s) andl(s) are the Laplace transforms of the mean total

D(X,5)= — f dx’ p(x’,0)e” (s—@)(x—x"lu population(13) and the probabilityi (t) of electron produc-
®Jo tion due to external illumination, respectively. Following a

1 - - method similar to that in Refl], N(s) can be shown to be
+ m {bN(s)+1(s)}e"(s-a¥u (15  given by

L , _
N(O)—J dx’ p(x’,0)e (S~ alL—x Mg (s)[1—e s~k

-~ 0
N(s)=

5 , (16

_a_ 1+ —(s—a)L/u
(s—a—b) s—a—be

whereN(0) denotes the total electron populationt&at0. The inverse Laplace transform of the above expressions can be easily
found by substituting in Eqg15) and (16) the expansion

71_ * (_b)n
_n:O (S_a_ b)n

1+ e*(S*a)L//.L enaL/,u.efanl,u. (17)

s—a—b

It follows that the mean electron density in the intervalL(0is determined by

b —b)"
p(x,t)=e?p(x— ut,0) 0(x— ut) + m e?'N(0) ZO % ePlt= O nb/ulrt — (x+nL)/ w]"0(t— (x+nL)/ )
n= .

©

b
—;eatf dx’ p(x’ 0)2

b n ,
(=b7 ) Pt DX (M DLV — [ —x" + (n+ L)L)/ "0t —[X— X"+ (n+ 1)L/ w)

(—=b)"

1 b t
+ = @R (t—xI ) Ot —XI )+ — e D1, e”b”“{ f dr I(t— 7)™ r—(x+nL)/u]"
m o n=o N! 0

t
X O(7— (X+ nL)/,,L)—e*bL’Mf d7 1(t—7)e®™ P r—[x+(n+1)L)/ u}"0(r—[x+(n+1)L]/ ) (18)
0
and the mean total population is given by

o0 _ n ee] b
N(t)= e<a+th(0)2 ( ) e MUkt —nL/u]"0(t—nL/u)—e@tdr J dx’ p(x’ O)e*bX’ﬂZ (n)

X e P ULt —[(n+1)L—x' T/ u} 0t —[(n+1)L— x]/,u)+2 (_) e nbUu

o

t —b)" t
xf dr I(t—7)e®* P Tr—nl/u]"0(t—nL/p)— ( nl) e*“‘*l)buﬂf dr I(t—r)e@+d)r
0 n=0 ! 0
X[r=(n+1)L/u]"0(r— (n+ 1)L/ w), (19
|
where 6(x) is the Heaviside step function defined as such as the electronic current at the cathode. The long-time
0 0 limit of these quantities, if exists, is obtained frdri7]
, X<
09=11, x>o. (20
Equations (18) and (19) are analytical expressions to p=(x)=lm{sp(x,8)}, N.=lim{sN(s)}.  (21)

. . . . s—0 s—0
evaluate dynamical macroscopic properties in the system,



Thus, taking this limit in Eq(15), we get

ax/u

p(X)= {bN..+1.}, (22)

M

wherel , is the asymptotic value of the external illumination. =
Integrating Eq.(22) over the gap length, we obtain the rela- ~ ;]
e

tion

Nm{ 1- g (ea““—l)) =1, g (edtr—1), (23

from which two different physical situations for the exis-

tence of a long-time finite electron population arise.

(i) When the parameters of the discharge satisfy the cor

dition

a

b=Dbcy= alln_q’

(24)
known as theeritical conditionor Townsend breakdown cri-
terion[2,9-11], it follows from Eq.(23) that a finite value of
N.. exists only whenl ,=0. In this case, Eq(16) for the
mean total electron population, together with E2fl), yields

N(O)—fo'-dx p(x,0)ea(L )k +T(S=O)[1—eau'“]

N..=

L OL
(29)

with a mean electron density given by
Po(X)= % N..e/#, (26)

(i) When the critical condition, i.e., Eq24), is not sat-
isfied, a finite positive value oN., in Eq. (23) implies |,

=14, with |, a positive constant, from which the condition

(27)

b
S (er-1)<1

follows, i.e., O<b<b,, referred to as theubcritical con-

dition. In this case, the mean total electron population, o

tained from Eq(23), is

eaL/;L_ 1

Nm=|om, (28
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FIG. 1. Time behavior of the average total-electron population
for a time-dependent illumination source of the fohft) =1, for
0<t=<1.5 and zero otherwise. The plots correspond to discharges
with the same primary production parameget 2, for several val-
ues of the secondary production paramdiersatisfying (1)—(3)
subcritical, (4) critical (b.;=0.313 04), and5) supercritical con-
ditions. Dimensionless quantities are used, as defined in the text.

trons reach the anode. Thus, after one transit lirfe, i.e.,

at time ty+L/u, the original electrons and their primary
descendants will have disappeared. On the other hand, at any
intermediate timey<t<ty+L/u, secondary electrons are
being produced at the cathode at a rat(t) +1,. Hence,
after one transit time, the total number of electrons produced
by them is[5/*d[bN(7+to) +1o]exga(l/u—17)]. The sta-
tionary condition implies that this total number of electrons
must be equal to the initial populatidii(ty) and be indepen-
dent of the particular timeég, i.e., N(tg) =N(7+1tg)=N.,,,

from which Eq.(28) follows. The stationary condition can be
written as

bN,.+ 1,

an. (30

)(ea““—l)=1,

which is a generalization of the previous stationarity crite-
rion in the absence of external sources, where the ratio
(bN,,+1g)/aN,, is now interpreted as the total number of

p.secondary electrons produced by primary eleci®nll].

In order to illustrate these results, we will analyze two
cases in which there are no electrons present at tin@,
i.e.,, N(0)=0, and where an external illumination source is
impinging on the surface of the cathode. To simplify the
notation, hereinafter we introduce the dimensionless quanti-

while the corresponding mean electron density, obtainedfes ut/L—t, x/L—X, al/u—a, bL/u—b, andIL/u—I

from this equation and Ed22), is

a
a—b(e?r—1)

| (@~

pee(X) = : (29

The stationarity condition in Eq(28) can be deduced

to denote time, position, and probabilistic coefficients, re-
spectively. In both cases, we take=2, so that b
=0.313 04, and show the time behavior of the mean popu-
lation N(t) as predicted by Eq19), for different values of
the parameteb.

In the first example, the illumination is constant and equal

from physical arguments as follows. Let us assume that, &b |, during the time interval &t<7=1.5 and zero after-

an arbitrary timety, a total population ofN(ty) electrons ward. Figure 1 shows the resulting behavior of the average
exists within the gap. As they travel towards the anode, théotal population, where fast growth during the first transit

population of these electrons will increase due to direct iontime (t<1) is observed due to the fact that there are only

ization collisions and, at the same time, will decrease as ele@lectron sources, but no losses. When the initial electrons
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reach the anode at=1, the losses become important: For a
negligible secondary electron productibr=0, the popula-
tion reaches a steady value at this time and remains there
until the external illumination at the cathode is removed at

F(x,t)EJOde’ R(x,x’;t). (33

time t=1.5; for timest>1.5, it decays steadily until it com-
pletely disappears dat=2.5. A similar behavior at the early
stages occurs for discharges witkc®<b,;;, although, in

contrast to the case with=0, the population still grows

It follows from Eq. (12) that F(x,t) represents the correla-
tion between the local fluctuations of the electron density at
a positionx in the gap and the fluctuations of the total elec-
tron population, at the same tinte {Sn(x,t) SN(t)). Ac-

during the intermediate times, but at a slower pace; after theording to the definition oF (x,t), both sides of E¢(32) can

illumination source is removed, dt=1.5, the population

be integrated over the gap length to obtain a closed integral

eventually decreases and asymptotically disappears. Whegjuation forF(x,t), namely,

b=b., the population reaches a stationary finite value,
given by lo7(1—e®)(1—bgie®) 1, as follows from Eq.
(25). Finally, whenb>b.; the population grows without
limit.

In the second example, we present the resulting behavior
of the total electron population for a time-independent illu-
mination | 5 for the same discharge conditions as in Fig. 1.
As observed in Fig. 2, for €b<b.;, the population
reaches an asymptotic steady-state value, given by Z8j.
within a few transit times. Fob=b.;;, the population in-
creases monotonically, without reaching a stationary value,
and, for critical discharges, it approaches asymptotically a
linear behavior at long timesee Appendix A thus, in par-
ticular, fora=2 andb=0.313 04, i.e.pgit,

N(1)
———4.866—1.342.

(31)
Iy

IV. FLUCTUATIONS AROUND THE MEAN
ELECTRON POPULATION

Statistical correlations between the local-density fluctua-

F(x,t)=e2'9(L— ut) O(x— ut)

L—ut
dx'R(x— ut,x";0)
0

+p(x,1){(eB'—1) O(x— ut) + (/¥ —1)

1
X O(ut—x)}+ m e L[ HN(t—x/u)

b
+1(t—x/ )]0t —x/ ) + m e g(t—x/ )

X , x—x'
X fdx’e‘2ax leEl x! t— ——
0 M

L—x
+J dX'F(x',t—=x/u)

0 K

X—x’
X' t— .
y73

(34

X
><6(x—,ut)J dx’'e 2X/nE
X— ut

tions at two different positions are accounted for by theA general time-dependent solution to this equation is not
density-density correlation functidR(x’,x";t), which satis- available. However, as shown below, an exact finite station-
fies the partial integro-differential equation given by Eq.ary solution can always be found for subcritical discharges as
(10). This equation can be solved formally by means of along as the external illumination at the cathode does not

double Laplace transform for the space domain, yielding

R(x',x";t)=e®'R(x" — ut,x"— ut;0) (X" — ut) (X" — ut)
+ 8(x" —x") p(x",t){(e*'—1) O(x" — ut)

, 1
+ (e 1 — 1)0(,ut—x’)}+;5(x’ —x")

X @2 IO N(t—x"/ )

HI(t—=x"T )} O(ut—x")
b )

+_62ax /,uF(X/ _X",t_X”/,LL)
o

X O(X'—=xX")O(t—x"u)
b '

+—e2 R (X" — X" t—X"1 )
o

XO(X"—=x")O(t—x"Tu),

(32

where the following definition has been introduced:

vanish at long times.
It follows from Eg. (34) that the long-time limit of the
function F(x,t), when it exists, must satisfy

100

__O
—
~~
il
S’
pd 14 Mb=00 B
(2)b=01
(3)b=02
(4) b =0.31304
0.1 4 5)b=04 L
Ty 1Tttt rr T
0 1 2 3 4 5 6

Time

FIG. 2. Time behavior of the average total-electron population
for a constant illumination sourdét)=1,. The plots illustrate the
average population for the same discharge parameters as in Fig. 1.
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c o aa L . 1 BN | raxip , _M c e(1+K)aL//.L_1 ie e(l—K)aL/,u_ 1
(X)_(e )pOC(X) m { 0 OC}e 0-00_5 1 1+ k 2 11—k
b x :
2 eZaW{ f dx’'e” 22 /HE(x") +Cy(ek— 1)] : (43)
0
+ LiXdX/F(X/) (35) This expression can be shown to be a finite, positive quantity
0 ' only in the interval | «|>0. Whenx—0 the electron den-

sity fluctuations are such th&t(x,t)—«~ ast—w. This lat-

whereF(x)=lim,_...F(x,t). This equation can be cast into ter result is in agreement with our previous conclusion re-
the f0||owing Ordinary nonhomogeneous differential equa_garding critical diSChargeS with no external illumination that,

tion with constant coefficients: even though the mean population reaches a stationary value,
the fluctuations grow in time without lim{tl]. Finally, in
d? 2a d a2 supercritical cases both the mean population and its fluctua-
D2 F(x)— 7 ax F(x)+ ? (1- k?)F(x)=q(x), tions diverge with time. We conclude that only in the case of

(36) subcritical discharges there exists a stationary state, which is
characterized by Eq$28) and (43) for the mean total elec-

with tron population and its qu_ctuati(_)ns, respectively. _
Based on the above discussion, we now look for a time-
2 ab ab dependent solution in.the sub_critical case, which asymptoti-

q(x)=[bN,+1 w][_z +—+— eaL/n] e?n (37)  cally approaches the final stationary state, &88) and(43),
P A at long times. To this end, we introduce a dimensionless

smallness parameter
and

e=bl/n (44)
2
K?=1— 2 (38  and assume that the initial electron distribution is determin-
istic, i.e., R(x’',x";0)=0, and therefore=(x,0)=0. Using
this parameter, Eq.34) can be rewritten as

2a
2allpu__ 1 _
e 1 it

We shall point out that £«2>0 for subcritical discharges,
i.e., when Eq(27) is satisfied:x>=0 when the critical con-
dition in Eq. (24) is satisfied; andk?<0 for supercritical
discharges. 1 . paxiul —1

In the case of subcritical dischargeb,€1,>0), it is +;e KI(t=x/ ) O(t—=x/ ) + ee“* KL
easy to verify that there exists a finite stationary solution
satisfying both Eqs(35) and(36), given by

F(x,t)=p(x,){(e*'~1) B(x— ut) + (e®/#— 1) 6 ut—x)}

X [ N(t—x/ ) 0(t—x/ )+ 6(X— ut)

F(X):eaX/'U'(CleaKX/’u-i‘ Czefaxxl,u._i_ CS)Y (39)
XJ’X dx’ 2ax’/MF( "t X—X’)
X e X, =
where X— ut M
1 k+1 aell—wallu X am2ax'] ' x—x’
leﬁ{bNxHo} ) o(I-mallu_ 1)’ +O(t=x/p) fodxe PR XLt “
T
1-«

(40 +J'0L_de'F(x',t—x/M) . (45)

T—5a0 ' The solution to this equation can be obtained by using the
€ #-1 method of successive approximatiof8]. Thus we write
1-« the solution as a power series of the smallness pararaater

K

1 a\/1—«? a+b/(1—«k)
CZE;{bNm+IO}(B)( )
a—b

(41)

%)

and F(x,t)zmzo €MF m(X,1). (46)
CSE—E{bNmHO} iz (42) Although the.fun_ct!onSp(x,t) and_N(t) appegring in Eq.
)z K (45) depend implicitly one, we will assume in expansion
(46) that they are known functions of time and will ignore
whereN,, is the asymptotic value of the mean electron popu-their e dependence.
lation, obtained from EQq(28). Finally, from Eqgs.(14) and Substitution of Eq(46) into Eq. (45) yields the following
(33), the variance at long times is obtained by simply inte-recursive set of equations for the coefficients of the different

grating Eq.(39) over the gap length, yielding powers ofe:

b
1+~ (1+en)
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Fo(X,t)=p(x,1){(€3'— 1) O(x— ut) + (e¥#—1) O ut—x)} 40 5 ' ' '
35 @ 3
1 2ax/
+ — e @ (t—x ) O(t—x/ ) (47) 30 3 (3)
H =)
= 25 @ 1
and, form=1, = 201 o
S
2ax/p « 15 7 (1) b=00 3
F (X t)=e N(t—x/ ) O(t— X/ 1) S 1+ O(X— put) S o] (2) b=003 3
m{X, L m,1 (3) b=0.05 s
5 (4) b=007 -
x , X—x'
XJ dx' e 23 ’“le(x’,t— ) 0 L ] T '
x— ut M 0 1 2 3
+6(t—x/ ) Time
X ey . X—X' FIG. 3. Variance of the total-electron population as a function of
X fodX e PEmo1| X' t— time, as obtained from Eq50), keeping terms up to order. A

constant illumination sourcdgt) =1, was used, with a primary pro-
duction parametea=2. In all the plots, the secondary production
. (48 parameteb satisfies the convergence criterion given in E£9).

L—x
+J AX'F o1 (Xt =X/ w)
Dimensionless quantities are used, as defined in the text.

0

Similarly to the case in which there is no external illumina-
tion source[1], the above expansion is found to converge oy(t)=6(L—put)
when

2| utedt— % (e?'—1)

L
f dx p(x,t)
ut

wnt
+2f dx p(x,t) xeaxlﬂ—g(eaxlﬂ—l)}
0

-1/2
B R T I
|e|<2 aal | 2aL (@ 1)-1 . (49 t
by g 2 (ezm_l)}
Finally, the variance of the total electron population obtained
from Eqgs.(14), (33), and(46) can be also expressed in pow- s avn VOB o
ers of the smallness parameter + f dx p(x,t)e?#— ——— (e"¥'—1)
b 0 b 2a
_ axiuw__ ax/u
az(t)=mZ:0 eMod (1), (50) +0(ut L>[ ZL dx p(X,t)| x€ 5 (e
L et M e
where 1) | Hlo g & 5o (€71

E - aX/,u_I_Oﬁ 2al/u _
+ b fo dx p(x,t)e Za(e 1);.

L
o= ax Fox. (51) b
0

(53

In particular, for a constant external illumination

I(t)=1,>0, the first two-expansion terms in EGO) are In order to illustrate the above results, in Figs. 3—6 we

consider a subcritical electrical discharge, with a constant
illumination source, i.el(t)=1,. Similarly to Figs. 1 and 2,
we takeN(0)=0 anda=2, with all the variables in the
dimensionless form defined in Sec. Ill. In Fig. 3 we show the
time behavior of the variance in E¢p0), up to orderg, i.e.,
o?(t)=0o3(t)+ ea?(t). Several values are used for the sec-
ondary production parametdr satisfying the convergence
criterion stated in Eq49), which for the case=2 becomes
b<0.073. Fast growth of the fluctuations is observed during
the first transit period, approaching quickly their asymptotic
values afterward. We note that the asymptotic value of the
variance grows monotonically with the parameter This
(52 result is in good agreement with the exact asymptotic values
of the variance, as obtained from Hg3), which are plotted
and in Fig. 4; a monotonically increasing behavior with the sec-

o5(t)=6(L— put)

(e¥t— 1)thdx p(X,t)+ J’Oﬂtdx p(X,t)
"

|
X (eh—1)+ 52 (€% 1) +0(ut—L)

X dex (x t)(eaﬂﬂ—1)+|—°(e2a“#—1)
0 pL% 2a
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FIG. 6. Exact asymptotic value of the relative width of the fluc-
tuations as a function of the secondary production parantefer
the subcritical conditions in Fig. 4.

FIG. 4. Exact asymptotic value of the varian@) as a func-
tion of the secondary production parametexb,;=0.313 04
(a=2). Dimensionless quantities are used, as defined in the text.

as shown in Appendix B. We note that the variance-to-mean
ondary parametel is observed here. It is shown in Appen- ratio is discontinuous ai=b; in fact, o /N,,— % when-
dix B that the asymptotic value of the variance divergeseyerb>b,,. On the other hand, for small valuestfit can
whenb approache$,;=0.313 04 @=2) as be shown thatsee Appendix €

(1.210 151,
~ (b—0.31304%"

O

N i,

¥

(59

{1.5209- 1.430+ 0.7554%+ O(b%)},

56
In Fig. 5 we plot the time behavior of the relative fluctua- (8

tions a(t)/N(t) for the same discharge conditions as in Fig.reflecting the quasilinear behavior in Fig. 6. It is worth not-
3. In all cases, the relative fluctuations are divergent at théng thato .. /N..,— % whenl,—0 for critical as well as sub-
early stages of the discharge since, in general, fluctuationgritical discharges, as follows from Eq&5) and (56), in
are much more significant in small-size populations. Theagreement with previous result$].

relative width decays in time and reaches its asymptotic
value within a few transit times. The exact long-time values
of the relative width as a function of the secondary produc-
tion parametetb is shown in Fig. 6. This function decays
monotonically with b, reaching its minimum value &b
=bgit, given by

V. CONCLUDING REMARKS

In this work a characteristic functional approach was used
to study fluctuations in the population of electrons within the
plates of a discharge gap, in the presence of external illumi-
nation at the cathode. A Markov description of the electron
population was developed by means of a space-discrete
model. An equation for the characteristic functional associ-
ated with the corresponding probability density was obtained
in the limit to the continuum, whose first- and second-order
functional derivatives yielded time-evolution equations for
the average total population and the density-density correla-

O
N, b=0.313 04

~1.10007

T

25 L I i

(55

2.0

1.5 4

o (t) I,"2IN(t)

1.0

FIG. 5. Relative width of the fluctuations for the subcritical

conditions in Fig. 3.

tion function, respectively. The solutions to these equations
were analyzed for several different discharge parameters.
For electrical discharges in the presence of a constant ex-
ternal illumination source, the results reveal the existence of
a finite stationary population in the case of subcritical dis-
charges only; a physical interpretation is provided for the
corresponding steady-state solution, E2B). In critical and
supercritical discharges the population is found to diverge.
On the other hand, the analysis of the fluctuations in the total
population yields a nonvanishing finite stationary solution
only in the case of subcritical discharges. It is found that the
stationary electron variance grows monotonically as the pa-
rameters of the subcritical discharge approach the critical
condition given by Eq(24) and it becomes infinite for criti-
cal discharges. However, the corresponding variance-to-
mean ratioo/N shows a quasilinear behavior as a function of
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the secondary parametlr for a fixed value of the primary  _ lo(€2—1)2
production parametea; the limit of o/N whenb— b ex- N(s)= 2 1r(a_1)e
ists; it is finite, but becomes infinite whenever the valuels of
are greater thab;. 1 (1e2(e?—1)[(a—2)e?*+a+2]
The results for the case where the external illumination 3 2[1+(a—1)e? tagtas
vanishes at long times are in agreement with our previous )
work: A stationary average population is attained only for tapst--, (AS)

critical discharges; however, both the corresponding variance o
and variance-to-mean ratio diverge. It is concluded that stoWhere ap,a;,ay,... arereal constants, whose explicit ex-
chastically stable solutions exist only for subcritical dis-Pressions are not relevant here. The leading term in(4%).

charges with a nonvanishing external illumination source. IS associated with the linear growth of the average population

N(t), while the second term is just a constant. It follows then
that the asymptotic behavior of the mean total population is
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APPENDIX A
In this appendix we show that for a critical discharge with APPENDIX B
a constant external illumination source the total electron ) _ ) ) )
population grows linearly in time for large values f19]. In this appendix we find the behavior of the long-time

In order to simplify the notation, in this and the subsequent/arianceo’, in Eq. (43), as the secondary production param-
appendixes, all quantities will be expressed in the dimensioreter b approaches the critical value, i.éa;—b.;. To this

less form defined in the text. end, we use the expansion parameter
For our purpose, we take E@l6) with p(x,0)=0 and 5
assume that there is a constant illumination source of the 7°=Dbcit—b, (B1)
typel(t)=1,6(t), whered(t) is the Heaviside step function o ) ) . )
defined in Eq/(20); thus valid in the interval Gsb<b,, i.e., for subcritical dis-
charges. In terms of the parametgf, the mean total elec-
- lo 1—e (s-9) tron population in Eq(28) is written as
N(s)= S . (A1 N om-2: B2
(s—a—h)| 1+ — e (57 == 107

similarly, the parametek? in Eq. (38) is expressed as

According to Eq.(24), in the case of a critical discharge we

a, 2 —2 2a__ 4
can writeb=a/(e*—-1), so that Eq(Al) becomes =2a ey (e®=1)n" (B3)

Hence, in the limit of small values of, the parametek is

lo 1-e @ (A2)  Given by

N(s)= S

(s— 2a

1—

=2a le?y

1 2 4
aac | 7O (B4
For small magnitude of the variabte we can expandi](s)

in powers ofs by using the expansion it follows that, in this limit,

e(ltK)a_
P ng 2
g (s—a)— 2 ( 1) : (A3) (1= x)a cnt{l yn+0O(7)}, (B5)
where y=\2a"Te?(b.e*—1).

after a few algebraic steps we obtain The substitution of the above results into E¢$0) and

(41) for the coefficientsC,; andC,, respectively, yields the
o e (1—e?) ai (=1)"s" 1)n expressions
(8)= s? [1+(a 1)e?] aa
C;,Co= |° a ) Poe +o( 1) (B6)
zw: (—1)"s" e 2e? bcritea_l 773
X|1—
[1+(a el =1 (n+1)! for small values ofy. On the other hand, the coefficie@

(A4) in Eq. (42) is exactly given by

Hence Ca=—lobZn % (B7)
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We note that all coefficientS;,C,,C5 diverge asp~ 4 when  for b<<b., it can be approximated by
n—0. Therefore, it is straightforward to show that the vari-

ance in Eq(43) behaves as BN, +1o=1o[ 1+ (b/bgi) + (b/bgir)2+O(b%)]. (C2)
0i=|—a [b-;aa—l_ Beyit| + O _13) (88)  On the other hand, for smatl, the parametek that appears
n crit€ n in Egs.(40)—(43) can be expanded as
for small values ofy. Finally, it follows from Egs.(B2) and 1 o2a 2a
(B8) that the relative fluctuations in this region can be writ- k=1+|=|b—|5=|b%+| == |b3+0O(b%. (C3
ten as a 232 2a3
O \/1 a Similarly to the steps followed in Appendix B, we substitute
N, E b€ — 1 berit| +O(7), (B9) Egs.(C2) and(C3) into Egs.(40)—(43) to obtain the variance
a2 for smallb, from which it follows that
so that
o aea 1/2
0. 1 a = ———] [1+kb+k,b2+0O(b%], (C4
im —=\/t | =5 Dberit] - leea—l) e ’
7|/ILno N.. \/|o (bcritea_l bcm) (B10 of )
where
APPENDIX C
. . . 1+2ae?—e?
Here we derive the stationary value of the variance-to- k= #, (C5)
mean ratioo. /N.., as follows from Eqs(28) and (43), for 2a(e’~1)
small secondary production parametberWe first note from
Eq. (28) for N.., together with the definitiorfi24) of b, _ 3—(4a’+2)e*+(4a—4)e*?~(4a—2)e*+e"?
that ko= 8a%(e?—1)2 ’
(C6)
0
bN,,+lg=7——F—; C1
O 1—b/bgy (€ and Eq.(C1) has been used.
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