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Stochastically stable fluctuations in a model of electrical discharge with external illumination

Lorena Zogaib
Departamento de Matema´ticas, Instituto Tecnolo´gico Autónomo de Me´xico, Mexico, Distrito Federal 01000, Mexico

Javier E. Vitela
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~Received 9 January 1997!

A Markov description of the electron population in a model of electrical discharge between parallel plates in
the presence of an external illumination source is developed. Electron production is assumed to be due to
ionizing collisions in the gas, as well as photoelectric emission at the cathode; the electrons are assumed to
move with a constant drift velocity towards the anode, where they are lost. The Markov description is based on
a discretized distribution of electrons within the gap, from where macroscopic equations for the mean electron
density and the density-density correlation function are obtained in the limit to the continuum. The results
show the existence of stochastically stable solutions only when stationary discharges are obtained by means of
a nonvanishing external illumination. In addition, the variance-to-mean ratio in the steady state shows a
discontinuity when the conditions of the discharge are those for which the breakdown Townsend criterion is
satisfied. Numerical examples are used to illustrate the results.@S1063-651X~97!10510-4#

PACS number~s!: 52.80.Dy, 05.40.1j, 02.50.2r
lle
lin

n
le
de
on

o
dr
ct
ar
c
a
th
e
ti

ea

im
it
ge
a
la

na
is
a

na
a

itr
liz
it

es:
age
the
this
and
cted,
an-

olt-
age;

an

ce-
due

s
tion
us
char-
pic
pre-
ho-
otal
its

on
in-

e a
s-
oth
ion.
ne-
een

g

o-
I. INTRODUCTION

In an earlier work@1# a simple Markov description for the
ionization growth in an electrical discharge between para
plates was developed. Unlike previous related works dea
exclusively with the total electron population@2–8#, a char-
acteristic functional approach was introduced there to a
lyze both space- and time-stochastic fluctuations of the e
tron population. In that model, the ionization growth insi
the gap is assumed to be due to atomic ionizing collisi
and to photoemission at the cathode from deexcitation
atoms; losses in the system are accounted for by the
motion of the electrons towards the anode due to the ele
field between the plates. Diffusion processes, space-ch
effects, and electron attachment and detachment are not
sidered. In addition, the voltage between the plates is
sumed to remain constant at all times, neglecting thus
feedback effect provided by the external circuitry. Und
these assumptions, it is found that the average popula
reaches a stationary state whenever the well-known br
downTownsend criterion@2,9–11# is satisfied; however, the
fluctuations around the mean behavior diverge as t
evolves. The system is then stochastically unstable and
concluded that the electron population in such dischar
will eventually extinguish. When the discharges do not s
isfy the Townsend criterion, both the mean electron popu
tion and its fluctuations either grow without limit~supercriti-
cal case! or vanish asymptotically~subcritical case!. Hence,
in the absence of any other electron sources, a statio
discharge cannot be sustained. The purpose of this paper
extend that work, by including in the model an extern
source of electrons at the cathode, e.g., ultraviolet illumi
tion, to show that a stationary discharge with finite fluctu
tions can be achieved under these conditions.

In most of the laboratory discharges, the external circu
through which the discharge voltage is applied can neutra
the statistical fluctuations in the system by the effect of
561063-651X/97/56~5!/5847~11!/$10.00
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Ohmic resistance, which provides self-stabilizing properti
When the current in the discharge increases, the volt
across the effective resistance of the circuit rises and
potential difference between the electrodes drops then;
in turn tends to reduce the ionization rate inside the gap
hence the current. If the external resistance can be negle
the statistical fluctuations cannot be neutralized in this m
ner and the stability properties are then lost@6,12#. In prac-
tice, a breakdown cannot be sustained when the applied v
age between the electrodes is exactly the Townsend volt
it is necessary that a small overvoltage exists, ensuring
expanding reproduction of the electron population@12# and,
in the absence of any electric-field distortion due to spa
charge accumulation, a stationary discharge is obtained
to the feedback effect just described.

A Markov description of population dynamics require
homogeneity conditions in the system under considera
@1,13,14#. Thus any localized fluctuation in a homogeneo
system spreads out instantaneously, as compared to the
acteristic time of the system, so that global microsco
quantities depend only on the values they assumed at a
vious time. An electrical discharge does not constitute a
mogeneous system since the mere information of the t
population at a given time does not determine completely
future evolution. Fluctuations in the total electron populati
are thus local phenomena and can only be described by
troducing the spatial density as a random object. Henc
Markov description of the evolution of an electrical di
charge can be constructed only by taking into account b
the space and the time distribution of the electron populat

The model adopted here consists of a simple o
dimensional description of an electrical discharge betw
parallel plates, which extends fromx50 to L. There exist a
uniform electric fieldE between the electrodes and a fillin
gas at pressureP, with eE/sP!1, wheree is the electronic
charge ands the cross section for momentum transfer@1,8#.
Although this system is not homogeneous, local hom
5847 © 1997 The American Physical Society
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5848 56LORENA ZOGAIB AND JAVIER E. VITELA
geneity conditions are introduced by dividing the configu
tion space into a certain numberK of cells of widthDx, in
which those conditions prevail. The distribution of electro
along the cells is assumed to change due to the follow
processes: ~i! an electron may suffer an ionizing collisio
with an atom in the gas, producing an additional electron
the same position, with a probability per unit timea; ~ii ! an
electron may excite an atom to emit a photon after a ne
gible delay, producing a photoelectron emitted from the ca
ode, and the entire process is here represented by a prob
ity per unit time b; ~iii ! a photoelectron may also b
produced at the cathode due to the incidence of externa
lumination, with a probability per unit timeI (t); and finally,
~iv! an electron within a cell may move into an adjoining c
with a probability per unit timem/Dx, wherem is a constant
drift velocity. The voltage across the gap is assumed cons
at all times and thus, similarly to the previous model,
feedback effect due to the external circuitry is taken in
account. In addition, diffusion processes, space-charge
fects, as well as electron attachment and detachment are
neglected here.

Within the restrictions given above, in Sec. II we co
struct a master equation for the conditional probabi
P($nl%,tu$nl

(0)%,0) of having a distribution of electrons$nl%
at a timet given an initial distribution$nl

(0)% at t50, with nl

denoting the number of electrons in thelth cell. Taking the
limit when the number of cells goes to infinity and the
width Dx goes to zero, in the dynamical equation for t
characteristic function associated withP, an equation for the
characteristic functional of the continuous electron distrib
tion n(x,t) is obtained. First- and second-order function
derivatives of this latter equation yield evolution equatio
for the mean electron density and the density-density co
lation function, respectively. The general solution to t
equation for the mean electron density, as well as the a
ciated mean total population, is obtained in Sec. III. In S
IV the solution to the equation for the density-density cor
lation function is analyzed in general and it is shown th
stationary solutions with finite fluctuations exist only f
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subcritical discharges in the presence of an external illu
nation source; this particular case is studied in detail. N
merical examples are used to illustrate the results. Fina
Sec. V contains some concluding remarks.

II. EVOLUTION EQUATIONS FOR THE MEAN
ELECTRON DENSITY AND THE DENSITY-DENSITY

CORRELATION FUNCTION

As mentioned above, the spatial distribution of electro
along the gap is accounted for by discretizing the configu
tion space in a numberK of cells of widthDx5L/K. Thus
the distribution of electrons within the cells is given by th
time-dependent random state vectorn[$n1 ,n2 ,...,nK%, con-
stituting a Markov process whose statistical properties
described by the conditional probabilityP(n,tun(0),0). The
evolution of the conditional probabilityP satisfies a maste
equation of the form

d

dt
P~n,tun~0!,0!5(

m
$Q~mun!P~m,tun~0!,0!

2Q~num!P~n,tun~0!,0!%, ~1!

where Q(mun) is the transition probability per unit time
from a distributionm to a distributionn. The conditional
probability P must satisfy the initial condition

P~n,0un~0!,0!5dn1 ,n
1
~0!dn2 ,n

2
~0!•••dnK ,n

K
~0!, ~2!

as well as the normalization condition

(
n

P~n,tun~0!,0!51, ~3!

for all t>0.
Electron gain and losses in each cell are accounted fo

the model through the probabilitiesa, b, I (t), andm/Dx, as
set in the Introduction. The transition probability per un
time in this case is given by
Q~mun!5a(
j 51

K

mj@dn1 ,m1
dn2 ,m2

•••dnK ,mK
#mj→mj 111bS (

j 51

K

mj D dn1 ,m111dn2 ,m2
•••dnK ,mK

1I ~ t !dn1 ,m111dn2 ,m2
•••dnK ,mK

1
m

Dx (
j 51

K21

mj@dn1 ,m1
dn2 ,m2

•••dnK ,mK
#mj→mj 21,mj 11→mj 11111

m

Dx
mKdn1 ,m1

dn2 ,m2
•••dnK ,mK21 , ~4!
tis-
of

o-
where the notationmj→mj61 indicates replacement ofmj
by mj61 in the corresponding Kroneckerd for each value
of j in the summation. The transition probability per un
time in Eq. ~4! can be obtained from the corresponding e
pression in Ref.@1# by adding to the total electron source
the cathodeb( jmj the sourceI (t) due to external illumina-
tion.

The ionization growth in the discharge gap is adequa
described by the Markov process specified in Eqs.~1! and~4!
only in the limit when the size of the cells tends to zero,
-

ly

o

that the homogeneity conditions within each cell are sa
fied. In this limit, a convenient alternative representation
the conditional probabilityP is that of the characteristic
functional @13,15#

C@u~x!;t#[K expS i E
0

L

dx8n~x8!u~x8! D L , ~5!

whereu(x) is a continuous function, conjugate to the micr
scopic density,n(xj )[ limDx→0$nj /Dx% @1#. It can be shown
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56 5849STOCHASTICALLY STABLE FLUCTUATIONS IN A . . .
then that the characteristic functionalC@u;t# satisfies the
partial integro-differential equation

2 i
]

]t
C@u;t#

5E
0

L

dx$a~12eiu~x!!1b~12eiu~0!!%
dC@u;t#

du~x!dx

1 i I ~ t !~12eiu~0!!C@u;t#

1 imE
0

L

dx u~x!
]

]x S dC@u;t#

du~x!dxD
1 imFu~x!

dC@u;t#

du~x!dxG
x50

, ~6!

whereu(L1)[0 and

dC@u~x!;t#

du~x8!dx8
[ lim

e→0

d

de
C@u~x!1ed~x2x8!;t# ~7!

is the functional derivative ofC @16#.
The mean electron density and the density-density co

lation function are obtained, respectively, by taking the fir
and second-order functional derivatives of the character
functional in Eq.~5!, that is,

F dC@u;t#

du~x8!dx8G
u50

5 i ^n~x8,t !&,

~8!

F d2C@u;t#

du~x8!dx8du~x9!dx9G
u50

52^n~x8,t !n~x9,t !&.

The averagê n(x,t)& represents the mean density of ele
trons as a function of the positionx in the gap at a timet,
whereaŝ n(x8,t)n(x9,t)& accounts for statistical correlation
between the microscopic densities of electrons at two dif
ent positionsx8 andx9 at the same timet.

From Eqs.~6! and ~8! the mean electron density and th
density-density correlation function are found to satisfy,
spectively, the partial integro-differential equations

S ]

]t
1m

]

]xD r~x,t !5ar~x,t !1bd~x!E
0

L

dx8r~x8,t !

1I ~ t !d~x!2md~x!r~x,t ! ~9!

and
e-
-
ic

-

r-

-

S ]

]t
1m

]

]x8
1m

]

]x9DR~x8,x9;t !

52aR~x8,x9;t !1ad~x82x9!r~x8,t !

1I ~ t !d~x8!d~x9!1bd~x8!E
0

L

dx R~x,x9;t !

1bd~x9!E
0

L

dx R~x8,x;t !1bd~x8!d~x9!

3E
0

L

dx r~x,t !2md~x8!R~x8,x9;t !

2md~x9!R~x8,x9;t !1md~x82L !d~x92L !r~x8,t !,

~10!

in which the following definitions have been used:

r~x,t ![^n~x,t !& ~11!

for the mean electron density and

R~x8,x9;t ![^dn~x8,t !dn~x9,t !& ~12!

for the density-density correlation function; heredn(x,t)
[n(x,t)2^n(x,t)& denotes local-density fluctuations at
positionx and a givent. The left-hand side of Eq.~9! rep-
resents the material derivative of the mean electron den
r. The first term on the right-hand side of Eq.~9! is the
source due to primary electron production, i.e., ionizing c
lisions; the next two terms represent the secondary prod
tion at the cathode, due to excitation collisions inside the g
and external illumination, respectively; the last term is
negative boundary source of electrons at the cathode, wh
role is to discard any contribution to the electron populat
coming from the left-hand side of the cathode since this
physically not possible. A similar interpretation holds for E
~10!.

The mean total population of the electrons in the gapN(t)
and the fluctuations around this values(t) are obtained from
the mean density and the density-density correlation func
as

N~ t !5E
0

L

dx r~x,t ! ~13!

and

s2~ t !5E
0

L

dxE
0

L

dx8R~x,x8;t !, ~14!

wheres2(t)[^dN2(t)& is the variance of the statistical dis
tribution of the electron population at timet. In the follow-
ing section, we obtain the solution to Eq.~9! for the mean
electron density. The variance of the total electron popu
tion is analyzed in Sec. IV.

III. MEAN ELECTRON POPULATION

By performing a Laplace transform@17# for the time do-
main, Eq.~9! can be cast into an ordinary differential equ
tion for r̃(x,s), the mean density in thes domain. The so-
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lution to this equation in the interval 0,x,L is given by

r̃~x,s!5
1

m E
0

x

dx8r~x8,0!e2~s2a!~x2x8!/m

1
1

m
$bÑ~s!1 Ĩ ~s!%e2~s2a!x/m, ~15!
o
em
wherer(x,0) is the mean electron density at time zero a
Ñ(s) and Ĩ (s) are the Laplace transforms of the mean to
population~13! and the probabilityI (t) of electron produc-
tion due to external illumination, respectively. Following
method similar to that in Ref.@1#, Ñ(s) can be shown to be
given by
asily
Ñ~s!5

N~0!2E
0

L

dx8r~x8,0!e2~s2a!~L2x8!/m1 Ĩ ~s!@12e2~s2a!L/m#

~s2a2b!F11
b

s2a2b
e2~s2a!L/mG , ~16!

whereN(0) denotes the total electron population att50. The inverse Laplace transform of the above expressions can be e
found by substituting in Eqs.~15! and ~16! the expansion

F11
b

s2a2b
e2~s2a!L/mG21

5 (
n50

`
~2b!n

~s2a2b!n enaL/me2nLs/m. ~17!

It follows that the mean electron density in the interval (0,L) is determined by

r~x,t !5eatr~x2mt,0!u~x2mt !1
b

m
eatN~0! (

n50

`
~2b!n

n!
eb@ t2~x1nL!/m#@ t2~x1nL!/m#nu„t2~x1nL!/m…

2
b

m
eatE

0

L

dx8r~x8,0! (
n50

`
~2b!n

n!
eb$t2@x2x81~n11!L#/m%$t2@x2x81~n11!L#/m%nu„t2@x2x81~n11!L#/m…

1
1

m
eax/mI ~ t2x/m!u~ t2x/m!1

b

m
e2bx/m (

n50

`
~2b!n

n!
e2nbL/mH E

0

t

dt I ~ t2t!e~a1b!t@t2~x1nL!/m#n

3u„t2~x1nL!/m…2e2bL/mE
0

t

dt I ~ t2t!e~a1b!t$t2@x1~n11!L#/m%nu„t2@x1~n11!L#/m…J ~18!

and the mean total population is given by

N~ t !5e~a1b!tN~0! (
n50

`
~2b!n

n!
e2nbL/m@ t2nL/m#nu~ t2nL/m!2e~a1b!tE

0

L

dx8r~x8,0!e2bx8/m (
n50

`
~2b!n

n!

3e2b~n11!L/m$t2@~n11!L2x8#/m%nu„t2@~n11!L2x8#/m…1 (
n50

`
~2b!n

n!
e2nbL/m

3E
0

t

dt I ~ t2t!e~a1b!t@t2nL/m#nu~t2nL/m!2 (
n50

`
~2b!n

n!
e2~n11!bL/mE

0

t

dt I ~ t2t!e~a1b!t

3@t2~n11!L/m#nu„t2~n11!L/m…, ~19!
ime
whereu(x) is the Heaviside step function defined as

u~x!5 H0,
1,

x<0
x.0. ~20!

Equations ~18! and ~19! are analytical expressions t
evaluate dynamical macroscopic properties in the syst
 ,

such as the electronic current at the cathode. The long-t
limit of these quantities, if exists, is obtained from@17#

r`~x!5 lim
s→0

$sr̃~x,s!%, N`5 lim
s→0

$sÑ~s!%. ~21!
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56 5851STOCHASTICALLY STABLE FLUCTUATIONS IN A . . .
Thus, taking this limit in Eq.~15!, we get

r`~x!5
eax/m

m
$bN`1I `%, ~22!

whereI ` is the asymptotic value of the external illuminatio
Integrating Eq.~22! over the gap length, we obtain the rel
tion

N`H 12
b

a
~eaL/m21!J 5I `

1

a
~eaL/m21!, ~23!

from which two different physical situations for the exi
tence of a long-time finite electron population arise.

~i! When the parameters of the discharge satisfy the c
dition

b5bcrit[
a

eaL/m21
, ~24!

known as thecritical conditionor Townsend breakdown cri
terion@2,9–11#, it follows from Eq.~23! that a finite value of
N` exists only whenI `50. In this case, Eq.~16! for the
mean total electron population, together with Eq.~21!, yields

N`5

FN~0!2E
0

L

dx r~x,0!ea~L2x!/mG1 Ĩ ~s50!@12eaL/m#

12
bL

m
eaL/m

,

~25!

with a mean electron density given by

r`~x!5
b

m
N`eax/m. ~26!

~ii ! When the critical condition, i.e., Eq.~24!, is not sat-
isfied, a finite positive value ofN` in Eq. ~23! implies I `

5I 0 , with I 0 a positive constant, from which the conditio

b

a
~eaL/m21!,1 ~27!

follows, i.e., 0<b,bcrit , referred to as thesubcritical con-
dition. In this case, the mean total electron population,
tained from Eq.~23!, is

N`5I 0

eaL/m21

a2b~eaL/m21!
, ~28!

while the corresponding mean electron density, obtai
from this equation and Eq.~22!, is

r`~x!5
I 0eax/m

m F a

a2b~eaL/m21!G . ~29!

The stationarity condition in Eq.~28! can be deduced
from physical arguments as follows. Let us assume tha
an arbitrary timet0 , a total population ofN(t0) electrons
exists within the gap. As they travel towards the anode,
population of these electrons will increase due to direct i
ization collisions and, at the same time, will decrease as e
n-

-

d

at

e
-
c-

trons reach the anode. Thus, after one transit timeL/m, i.e.,
at time t01L/m, the original electrons and their primary
descendants will have disappeared. On the other hand, at a
intermediate timet0,t,t01L/m, secondary electrons are
being produced at the cathode at a ratebN(t)1I 0 . Hence,
after one transit time, the total number of electrons produce
by them is*0

L/mdt@bN(t1t0)1I 0#exp@a(L/m2t)#. The sta-
tionary condition implies that this total number of electrons
must be equal to the initial populationN(t0) and be indepen-
dent of the particular timet0 , i.e., N(t0)5N(t1t0)5N` ,
from which Eq.~28! follows. The stationary condition can be
written as

S bN`1I 0

aN`
D ~eaL/m21!51, ~30!

which is a generalization of the previous stationarity crite
rion in the absence of external sources, where the rat
(bN`1I 0)/aN` is now interpreted as the total number of
secondary electrons produced by primary electron@9–11#.

In order to illustrate these results, we will analyze two
cases in which there are no electrons present at timet50,
i.e., N(0)50, and where an external illumination source is
impinging on the surface of the cathode. To simplify the
notation, hereinafter we introduce the dimensionless quan
ties mt/L→t, x/L→x, aL/m→a, bL/m→b, and IL /m→I
to denote time, position, and probabilistic coefficients, re
spectively. In both cases, we takea52, so that bcrit
50.313 04, and show the time behavior of the mean pop
lation N(t) as predicted by Eq.~19!, for different values of
the parameterb.

In the first example, the illumination is constant and equa
to I 0 during the time interval 0<t<t[1.5 and zero after-
ward. Figure 1 shows the resulting behavior of the averag
total population, where fast growth during the first transi
time (t<1) is observed due to the fact that there are onl
electron sources, but no losses. When the initial electro

FIG. 1. Time behavior of the average total-electron populatio
for a time-dependent illumination source of the formI (t)5I 0 for
0,t<1.5 and zero otherwise. The plots correspond to discharg
with the same primary production parametera52, for several val-
ues of the secondary production parameterb, satisfying ~1!–~3!
subcritical,~4! critical (bcrit50.313 04), and~5! supercritical con-
ditions. Dimensionless quantities are used, as defined in the text
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5852 56LORENA ZOGAIB AND JAVIER E. VITELA
reach the anode att51, the losses become important: For
negligible secondary electron productionb50, the popula-
tion reaches a steady value at this time and remains t
until the external illumination at the cathode is removed
time t51.5; for timest.1.5, it decays steadily until it com
pletely disappears att52.5. A similar behavior at the earl
stages occurs for discharges with 0,b,bcrit , although, in
contrast to the case withb50, the population still grows
during the intermediate times, but at a slower pace; after
illumination source is removed, att51.5, the population
eventually decreases and asymptotically disappears. W
b5bcrit , the population reaches a stationary finite val
given by I 0t(12ea)(12bcrite

a)21, as follows from Eq.
~25!. Finally, when b.bcrit the population grows withou
limit.

In the second example, we present the resulting beha
of the total electron population for a time-independent il
mination I 0 for the same discharge conditions as in Fig.
As observed in Fig. 2, for 0<b,bcrit , the population
reaches an asymptotic steady-state value, given by Eq.~28!,
within a few transit times. Forb>bcrit , the population in-
creases monotonically, without reaching a stationary va
and, for critical discharges, it approaches asymptoticall
linear behavior at long times~see Appendix A!; thus, in par-
ticular, for a52 andb50.313 04, i.e.,bcrit ,

N~ t !

I 0
→4.866t21.342. ~31!

IV. FLUCTUATIONS AROUND THE MEAN
ELECTRON POPULATION

Statistical correlations between the local-density fluct
tions at two different positions are accounted for by t
density-density correlation functionR(x8,x9;t), which satis-
fies the partial integro-differential equation given by E
~10!. This equation can be solved formally by means o
double Laplace transform for the space domain, yielding

R~x8,x9;t !5e2atR~x82mt,x92mt;0!u~x82mt !u~x92mt !

1d~x82x9!r~x8,t !$~eat21!u~x82mt !

1~eax8/m21!u~mt2x8!%1
1

m
d~x82x9!

3e2ax8/m$bN~ t2x8/m!

1I ~ t2x8/m!%u~mt2x8!

1
b

m
e2ax8/mF~x82x9,t2x9/m!

3u~x82x9!u~ t2x9/m!

1
b

m
e2ax8/mF~x92x8,t2x8/m!

3u~x92x8!u~ t2x8/m!, ~32!

where the following definition has been introduced:
re
t

e

en
,

or
-
.

e,
a

-

.
a

F~x,t ![E
0

L

dx8R~x,x8;t !. ~33!

It follows from Eq. ~12! that F(x,t) represents the correla
tion between the local fluctuations of the electron density
a positionx in the gap and the fluctuations of the total ele
tron population, at the same timet, ^dn(x,t)dN(t)&. Ac-
cording to the definition ofF(x,t), both sides of Eq.~32! can
be integrated over the gap length to obtain a closed inte
equation forF(x,t), namely,

F~x,t !5e2atu~L2mt !u~x2mt !E
0

L2mt

dx8R~x2mt,x8;0!

1r~x,t !$~eat21!u~x2mt !1~eax/m21!

3u~mt2x!%1
1

m
e2ax/m@bN~ t2x/m!

1I ~ t2x/m!#u~ t2x/m!1
b

m
e2ax/mu~ t2x/m!

3H E
0

x

dx8e22ax8/mFS x8,t2
x2x8

m D
1E

0

L2x

dx8F~x8,t2x/m!J 1
b

m
e2ax/m

3u~x2mt !E
x2mt

x

dx8e22ax8/mFS x8,t2
x2x8

m D .

~34!

A general time-dependent solution to this equation is n
available. However, as shown below, an exact finite stati
ary solution can always be found for subcritical discharges
long as the external illumination at the cathode does
vanish at long times.

It follows from Eq. ~34! that the long-time limit of the
function F(x,t), when it exists, must satisfy

FIG. 2. Time behavior of the average total-electron populat
for a constant illumination sourceI (t)5I 0 . The plots illustrate the
average population for the same discharge parameters as in F
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F~x!5~eax/m21!r`~x!1
1

m
$bN`1I `%e2ax/m

1
b

m
e2ax/mH E

0

x

dx8e22ax8/mF~x8!

1E
0

L2x

dx8F~x8!J , ~35!

whereF(x)[ limt→`F(x,t). This equation can be cast int
the following ordinary nonhomogeneous differential equ
tion with constant coefficients:

d2

dx2 F~x!2
2a

m

d

dx
F~x!1

a2

m2 ~12k2!F~x!5q~x!,

~36!

with

q~x![@bN`1I `#H a2

m2 1
ab

m2 1
ab

m2 eaL/mJ eax/m ~37!

and

k2[12
b2

a2 Fe2aL/m212
2a

b G . ~38!

We shall point out that 1>k2.0 for subcritical discharges
i.e., when Eq.~27! is satisfied;k250 when the critical con-
dition in Eq. ~24! is satisfied; andk2,0 for supercritical
discharges.

In the case of subcritical discharges (I `5I 0.0), it is
easy to verify that there exists a finite stationary solut
satisfying both Eqs.~35! and ~36!, given by

F~x!5eax/m~C1eakx/m1C2e2akx/m1C3!, ~39!

where

C1[
1

m
$bN`1I 0%S k11

k D ae~12k!aL/m

a2bS e~12k!aL/m21

12k D ,

~40!

C2[
1

m
$bN`1I 0%S a

bD S 12k2

k D a1b/~12k!

a2bS e~12k!aL/m21

12k D ,

~41!

and

C3[2
1

m
$bN`1I 0%S 1

k2D F11
b

a
~11eaL/m!G , ~42!

whereN` is the asymptotic value of the mean electron pop
lation, obtained from Eq.~28!. Finally, from Eqs.~14! and
~33!, the variance at long times is obtained by simply in
grating Eq.~39! over the gap length, yielding
-

n

-

-

s`
2 5

m

a H C1

e~11k!aL/m21

11k
1C2

e~12k!aL/m21

12k

1C3~eaL/m21!J . ~43!

This expression can be shown to be a finite, positive quan
only in the interval 1>uku.0. Whenk→0 the electron den-
sity fluctuations are such thatF(x,t)→` as t→`. This lat-
ter result is in agreement with our previous conclusion
garding critical discharges with no external illumination th
even though the mean population reaches a stationary va
the fluctuations grow in time without limit@1#. Finally, in
supercritical cases both the mean population and its fluc
tions diverge with time. We conclude that only in the case
subcritical discharges there exists a stationary state, whic
characterized by Eqs.~28! and ~43! for the mean total elec-
tron population and its fluctuations, respectively.

Based on the above discussion, we now look for a tim
dependent solution in the subcritical case, which asympt
cally approaches the final stationary state, Eqs.~39! and~43!,
at long times. To this end, we introduce a dimensionl
smallness parameter

e[bL/m ~44!

and assume that the initial electron distribution is determ
istic, i.e., R(x8,x9;0)50, and thereforeF(x,0)50. Using
this parameter, Eq.~34! can be rewritten as

F~x,t !5r~x,t !$~eat21!u~x2mt !1~eax/m21!u~mt2x!%

1
1

m
e2ax/mI ~ t2x/m!u~ t2x/m!1ee2ax/mL21

3H N~ t2x/m!u~ t2x/m!1u~x2mt !

3E
x2mt

x

dx8e22ax8/mFS x8,t2
x2x8

m D
1u~ t2x/m!F E

0

x

dx8e22ax8/mFS x8,t2
x2x8

m D
1E

0

L2x

dx8F~x8,t2x/m!G J . ~45!

The solution to this equation can be obtained by using
method of successive approximations@18#. Thus we write
the solution as a power series of the smallness parametere as

F~x,t !5 (
m50

`

emFm~x,t !. ~46!

Although the functionsr(x,t) and N(t) appearing in Eq.
~45! depend implicitly one, we will assume in expansion
~46! that they are known functions of time and will ignor
their e dependence.

Substitution of Eq.~46! into Eq.~45! yields the following
recursive set of equations for the coefficients of the differ
powers ofe :
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F0~x,t !5r~x,t !$~eat21!u~x2mt !1~eax/m21!u~mt2x!%

1
1

m
e2ax/mI ~ t2x/m!u~ t2x/m! ~47!

and, form>1,

Fm~x,t !5
e2ax/m

L H N~ t2x/m!u~ t2x/m!dm,11u~x2mt !

3E
x2mt

x

dx8e22ax8/mFm21S x8,t2
x2x8

m D
1u~ t2x/m!

3E
0

x

dx8e22ax8/mFm21S x8,t2
x2x8

m D
1E

0

L2x

dx8Fm21~x8,t2x/m!G . ~48!

Similarly to the case in which there is no external illumin
tion source@1#, the above expansion is found to conver
when

ueu,
1

2 F m

4aL S m

4aL
~e4aL/m21!21D G21/2

. ~49!

Finally, the variance of the total electron population obtain
from Eqs.~14!, ~33!, and~46! can be also expressed in pow
ers of the smallness parameter

s2~ t !5 (
m50

`

emsm
2 ~ t !, ~50!

where

sm
2 ~ t ![E

0

L

dx Fm~x,t !. ~51!

In particular, for a constant external illuminatio
I (t)5I 0.0, the first two-expansion terms in Eq.~50! are

s0
2~ t !5u~L2mt !H ~eat21!E

mt

L

dx r~x,t !1E
0

mt

dx r~x,t !

3~eax/m21!1
I 0

2a
~e2at21!J 1u~mt2L !

3H E
0

L

dx r~x,t !~eax/m21!1
I 0

2a
~e2aL/m21!J

~52!

and
d

s1
2~ t !5u~L2mt !H 2Fmteat2

m

a
~eat21!G E

mt

L

dx r~x,t !

12E
0

mt

dx r~x,t !Fxeax/m2
m

a
~eax/m21!G

1I 0Fmt

a
e2at2

m

2a2 ~e2at21!G
1

m

b E
0

mt

dx r~x,t !eax/m2
I 0

b

m

2a
~e2at21!J

1u~mt2L !H 2E
0

L

dx r~x,t !Fxeax/m2
m

a
~eax/m

21!G1I 0FL

a
e2aL/m2

m

2a2 ~e2aL/m21!G
1

m

b E
0

L

dx r~x,t !eax/m2
I 0

b

m

2a
~e2aL/m21!J .

~53!

In order to illustrate the above results, in Figs. 3–6 w
consider a subcritical electrical discharge, with a consta
illumination source, i.e.,I (t)5I 0 . Similarly to Figs. 1 and 2,
we take N(0)50 and a52, with all the variables in the
dimensionless form defined in Sec. III. In Fig. 3 we show th
time behavior of the variance in Eq.~50!, up to ordere, i.e.,
s2(t)>s0

2(t)1es1
2(t). Several values are used for the sec

ondary production parameterb satisfying the convergence
criterion stated in Eq.~49!, which for the casea52 becomes
b,0.073. Fast growth of the fluctuations is observed durin
the first transit period, approaching quickly their asymptot
values afterward. We note that the asymptotic value of t
variance grows monotonically with the parameterb. This
result is in good agreement with the exact asymptotic valu
of the variance, as obtained from Eq.~43!, which are plotted
in Fig. 4; a monotonically increasing behavior with the se

FIG. 3. Variance of the total-electron population as a function
time, as obtained from Eq.~50!, keeping terms up to ordere. A
constant illumination sourceI (t)5I 0 was used, with a primary pro-
duction parametera52. In all the plots, the secondary production
parameterb satisfies the convergence criterion given in Eq.~49!.
Dimensionless quantities are used, as defined in the text.
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ondary parameterb is observed here. It is shown in Appen
dix B that the asymptotic value of the variance diverge
whenb approachesbcrit50.313 04 (a52) as

s`
2 '

~1.210 15!I 0

~b20.313 04!2 . ~54!

In Fig. 5 we plot the time behavior of the relative fluctua
tions s(t)/N(t) for the same discharge conditions as in Fig
3. In all cases, the relative fluctuations are divergent at t
early stages of the discharge since, in general, fluctuatio
are much more significant in small-size populations. Th
relative width decays in time and reaches its asympto
value within a few transit times. The exact long-time value
of the relative width as a function of the secondary produ
tion parameterb is shown in Fig. 6. This function decays
monotonically with b, reaching its minimum value atb
5bcrit , given by

s`

N`
U

b50.313 04

5
1.100 07

AI 0

, ~55!

FIG. 4. Exact asymptotic value of the variance~43! as a func-
tion of the secondary production parameterb,bcrit50.313 04
(a52). Dimensionless quantities are used, as defined in the tex

FIG. 5. Relative width of the fluctuations for the subcritica
conditions in Fig. 3.
s

.
e

ns
e
ic
s
-

as shown in Appendix B. We note that the variance-to-mea
ratio is discontinuous atb5bcrit ; in fact, s` /N`→` when-
everb.bcrit . On the other hand, for small values ofb, it can
be shown that~see Appendix C!

s`

N`
5

1

AI 0

$1.520921.4307b10.7554b21O~b3!%,

~56!

reflecting the quasilinear behavior in Fig. 6. It is worth not-
ing thats` /N`→` when I 0→0 for critical as well as sub-
critical discharges, as follows from Eqs.~55! and ~56!, in
agreement with previous results@1#.

V. CONCLUDING REMARKS

In this work a characteristic functional approach was use
to study fluctuations in the population of electrons within the
plates of a discharge gap, in the presence of external illum
nation at the cathode. A Markov description of the electron
population was developed by means of a space-discre
model. An equation for the characteristic functional associ
ated with the corresponding probability density was obtaine
in the limit to the continuum, whose first- and second-orde
functional derivatives yielded time-evolution equations for
the average total population and the density-density correl
tion function, respectively. The solutions to these equation
were analyzed for several different discharge parameters.

For electrical discharges in the presence of a constant e
ternal illumination source, the results reveal the existence o
a finite stationary population in the case of subcritical dis
charges only; a physical interpretation is provided for the
corresponding steady-state solution, Eq.~28!. In critical and
supercritical discharges the population is found to diverge
On the other hand, the analysis of the fluctuations in the tota
population yields a nonvanishing finite stationary solution
only in the case of subcritical discharges. It is found that th
stationary electron variance grows monotonically as the pa
rameters of the subcritical discharge approach the critica
condition given by Eq.~24! and it becomes infinite for criti-
cal discharges. However, the corresponding variance-to
mean ratios/N shows a quasilinear behavior as a function of

t.

FIG. 6. Exact asymptotic value of the relative width of the fluc-
tuations as a function of the secondary production parameterb for
the subcritical conditions in Fig. 4.



f

io
ou
fo
n
st
is-
.

ia

ith
ro

en
io

th
n

e

-

tion
en

is

e
-

5856 56LORENA ZOGAIB AND JAVIER E. VITELA
the secondary parameterb, for a fixed value of the primary
production parametera; the limit of s/N whenb→bcrit

2 ex-
ists; it is finite, but becomes infinite whenever the values ob
are greater thanbcrit .

The results for the case where the external illuminat
vanishes at long times are in agreement with our previ
work: A stationary average population is attained only
critical discharges; however, both the corresponding varia
and variance-to-mean ratio diverge. It is concluded that
chastically stable solutions exist only for subcritical d
charges with a nonvanishing external illumination source
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APPENDIX A

In this appendix we show that for a critical discharge w
a constant external illumination source the total elect
population grows linearly in time for large values oft @19#.
In order to simplify the notation, in this and the subsequ
appendixes, all quantities will be expressed in the dimens
less form defined in the text.

For our purpose, we take Eq.~16! with r(x,0)50 and
assume that there is a constant illumination source of
type I (t)5I 0u(t), whereu(t) is the Heaviside step functio
defined in Eq.~20!; thus

Ñ~s!5
I 0

s

12e2~s2a!

~s2a2b!F11
b

s2a2b
e2~s2a!G . ~A1!

According to Eq.~24!, in the case of a critical discharge w
can writeb5a/(ea21), so that Eq.~A1! becomes

Ñ~s!5
I 0

s

12e2~s2a!

~s2a!2
a

ea21
@12e2~s2a!#

. ~A2!

For small magnitude of the variables, we can expandÑ(s)
in powers ofs by using the expansion

e2~s2a!5ea(
n50

`
~21!nsn

n!
; ~A3!

after a few algebraic steps we obtain

Ñ~s!5
I 0

s2

~12ea!

@11~a21!ea# F12ea(
n50

`
~21!nsn

n! G
3F12

aea

@11~a21!ea# (
n51

`
~21!nsn

~n11!! G21

.

~A4!

Hence
n
s

r
ce
o-

l

n

t
n-

e

Ñ~s!5
1

s2 S I 0~ea21!2

11~a21!eaD
2

1

s S I 0ea~ea21!@~a22!ea1a12#

2@11~a21!ea#2 D1a01a1s

1a2s21••• , ~A5!

where a0 ,a1 ,a2 ,... are real constants, whose explicit ex
pressions are not relevant here. The leading term in Eq.~A5!
is associated with the linear growth of the average popula
N(t), while the second term is just a constant. It follows th
that the asymptotic behavior of the mean total population
given by

N~ t !→S I 0~ea21!2

11~a21!eaD t2
I 0ea~ea21!@~a22!ea1a12#

2@11~a21!ea#2 .

~A6!

APPENDIX B

In this appendix we find the behavior of the long-tim
variances`

2 in Eq. ~43!, as the secondary production param
eter b approaches the critical value, i.e.,b→bcrit

2 . To this
end, we use the expansion parameter

h2[bcrit2b, ~B1!

valid in the interval 0<b,bcrit , i.e., for subcritical dis-
charges. In terms of the parameterh2, the mean total elec-
tron population in Eq.~28! is written as

N`5I 0h22; ~B2!

similarly, the parameterk2 in Eq. ~38! is expressed as

k252a21eah22a22~e2a21!h4. ~B3!

Hence, in the limit of small values ofh, the parameterk is
given by

k5A2a21eahF12S e2a21

4aea Dh21O~h4!G ; ~B4!

it follows that, in this limit,

e~16k!a21

~16k!a
5bcrit

21$16gh1O~h2!%, ~B5!

whereg[A2a21ea(bcrite
a21).

The substitution of the above results into Eqs.~40! and
~41! for the coefficientsC1 andC2 , respectively, yields the
expressions

C1 ,C25
I 0

h4 S a

2eaD S bcrite
a

bcrite
a21D1OS 1

h3D ~B6!

for small values ofh. On the other hand, the coefficientC3
in Eq. ~42! is exactly given by

C352I 0bcrit
2 h24. ~B7!
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We note that all coefficientsC1 ,C2 ,C3 diverge ash24 when
h→0. Therefore, it is straightforward to show that the va
ance in Eq.~43! behaves as

s`
2 5

I 0

h4 H a

bcrite
a21

2bcritJ 1OS 1

h3D ~B8!

for small values ofh. Finally, it follows from Eqs.~B2! and
~B8! that the relative fluctuations in this region can be wr
ten as

s`

N`
5A1

I 0
S a

bcrite
a21

2bcritD1O~h!, ~B9!

so that

lim
h→0

s`

N`
5A1

I 0
S a

bcrite
a21

2bcritD . ~B10!

APPENDIX C

Here we derive the stationary value of the variance-
mean ratios` /N` , as follows from Eqs.~28! and ~43!, for
small secondary production parameterb. We first note from
Eq. ~28! for N` , together with the definition~24! of bcrit ,
that

bN`1I 05
I 0

12b/bcrit
; ~C1!
s
es

s

es
-

for b!bcrit, it can be approximated by

bN`1I 05I 0@11~b/bcrit!1~b/bcrit!
21O~b3!#. ~C2!

On the other hand, for smallb, the parameterk that appears
in Eqs.~40!–~43! can be expanded as

k511S 1

aDb2S e2a

2a2Db21S e2a

2a3Db31O~b4!. ~C3!

Similarly to the steps followed in Appendix B, we substitu
Eqs.~C2! and~C3! into Eqs.~40!–~43! to obtain the variance
s`

2 for small b, from which it follows that

s`

N`
5S aea

I 0~ea21! D
1/2

@11k1b1k2b21O~b3!#, ~C4!

where

k1[
112aea2e2a

2a~ea21!
, ~C5!

k2[
32~4a212!ea1~4a24!e2a2~4a22!e3a1e4a

8a2~ea21!2 ,

~C6!

and Eq.~C1! has been used.
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